Source code for pyrolite.util.lambdas.oneill

"""
Linear algebra methods for fitting a series of orthogonal polynomial functions to
REE patterns.
"""

import numpy as np
import pandas as pd

from ..log import Handle
from ..meta import update_docstring_references
from ..missing import md_pattern
from .eval import get_function_components, lambda_poly
from .helpers import _collect_lambda_outputs
from .params import parse_sigmas

logger = Handle(__name__)


[docs]def get_polynomial_matrix(radii, params=None): """ Create the matrix `A` with polynomial components across the columns, and increasing order down the rows. Parameters ----------- radii : :class:`list`, :class:`numpy.ndarray` Radii at which to evaluate the orthogonal polynomial. params : :class:`tuple` Tuple of constants for the orthogonal polynomial. Returns -------- :class:`numpy.ndarray` See Also --------- :func:`~pyrolite.util.lambdas.params.orthogonal_polynomial_constants` """ radii = np.array(radii) degree = len(params) a = np.vander(radii, degree, increasing=True).T b = np.array([lambda_poly(radii, pset) for pset in params]) A_radii = a[:, np.newaxis, :] * b[np.newaxis, :, :] A = A_radii.sum(axis=-1) # `A` as in O'Neill (2016) return A
[docs]@update_docstring_references def lambdas_ONeill2016( df, radii, params=None, sigmas=None, add_X2=False, add_uncertainties=False, **kwargs ): r""" Implementation of the original algorithm. [#ref_1]_ Parameters ----------- df : :class:`pandas.DataFrame` | :class:`pandas.Series` Dataframe of REE data, with sample analyses organised by row. radii : :class:`list`, :class:`numpy.ndarray` Radii at which to evaluate the orthogonal polynomial. params : :class:`tuple` Tuple of constants for the orthogonal polynomial. sigmas : :class:`float` | :class:`numpy.ndarray` Single value or 1D array of normalised observed value uncertainties (:math:`\sigma_{REE} / REE`). add_X2 : :class:`bool` Whether to append the chi-squared values (χ2) to the dataframe/series. add_uncertainties : :class:`bool` Append parameter standard errors to the dataframe/series. Returns -------- :class:`pandas.DataFrame` See Also --------- :func:`~pyrolite.util.lambdas.params.orthogonal_polynomial_constants` :func:`~pyrolite.geochem.transform.lambda_lnREE` References ----------- .. [#ref_1] O’Neill HSC (2016) The Smoothness and Shapes of Chondrite-normalized Rare Earth Element Patterns in Basalts. J Petrology 57:1463–1508. doi: `10.1093/petrology/egw047 <https://dx.doi.org/10.1093/petrology/egw047>`__ """ assert params is not None names, x0, func_components = get_function_components(radii, params=params) X = np.array(func_components).T y = np.array(df) # make sure it's an array if df.ndim < 2: # if the input is actually a series y = y[None, :] sigmas = parse_sigmas(y.shape[1], sigmas=sigmas) xd = len(func_components) rad = np.array(radii) # so we can use a boolean index B = np.ones((y.shape[0], xd)) * np.nan s = np.ones((y.shape[0], xd)) * np.nan χ2 = np.ones((y.shape[0], 1)) * np.nan md_inds, patterns = md_pattern(y) # for each missing data pattern, we create the matrix A - rather than each row for ind in np.unique(md_inds): row_fltr = md_inds == ind # rows with this pattern missing_fltr = ~patterns[ind]["pattern"] # boolean presence-absence filter if missing_fltr.sum(): # ignore completely empty rows yd = missing_fltr.sum() # number of elements used for the fit A = get_polynomial_matrix(rad[missing_fltr], params=params) invA = np.linalg.inv(A) V = np.vander(rad, xd, increasing=True).T Z = ( y[np.ix_(row_fltr, missing_fltr)][:, np.newaxis] * V[np.newaxis, :, missing_fltr] ).sum(axis=-1) _B = (invA @ Z.T).T ############################################################################ _sigmas = sigmas[missing_fltr] _x = X[missing_fltr, :] W = np.eye(_sigmas.shape[0]) * 1 / _sigmas**2 # weights invXWX = np.linalg.inv(_x.T @ W @ _x) est = (X[missing_fltr, :] @ _B.T).T # modelled values # residuals over all rows residuals = y[np.ix_(row_fltr, missing_fltr)] - est dof = yd - xd # effective degrees of freedom (for this mising filter) # chi-sqared as SSQ / sigmas / residual degrees of freedom reduced_chi_squared = (residuals**2 / _sigmas**2).sum(axis=1) / dof _s = np.sqrt(reduced_chi_squared.reshape(-1, 1) * np.diag(invXWX)) B[row_fltr, :] = _B s[row_fltr, :] = _s χ2[row_fltr, 0] = reduced_chi_squared return _collect_lambda_outputs( B, s, χ2, df, names, add_uncertainties=add_uncertainties, add_X2=add_X2 )